
EdgeX
Security Assessment

Prepared by: RigSec

September 2, 2024

Contents

1 Introduction 2
1.1 About RigSec . 2
1.2 About edgeX . 2

2 Executive Overview 3
2.1 Scope . 3
2.2 Risk Classification . 3
2.3 Finding Summary . 3

3 Findings 4
3.1 (RS-01) Risk when swapping with 1inch router . 4
3.2 (RS-02) Signature does not follow EIP-712 . 4
3.3 (RS-03) USDT lacks a permit operation on both Ethereum and BSC networks, leading to the failure

of depositWithPermit function . 5
3.4 (RS-04) Deprecate testnet used in the contract . 5

1

1 Introduction

edgeX engaged RigSec to conduct a comprehensive security assessment of their smart contracts from Aug 13,
2024 to Aug 20, 2024. The purpose of this audit was to ensure the security and reliability of the smart contracts
implemented by edgeX.

1.1 About RigSec

RigSec is a blockchain regulatory technology company with a strong presence across Singapore, Hong Kong,
Taiwan, and Japan. We are dedicated to providing regulatory-compliant digital asset wallet solutions and security
consulting services.

With a focus on ensuring the integrity and resilience of blockchain technologies, we work closely with clients
to identify and mitigate potential vulnerabilities within their systems. Our team of experts combines extensive
knowledge of blockchain technology with a proactive approach to security, enabling us to provide comprehensive
assessments and recommendations.

Through our meticulous audits of smart contracts and implementation of regulatory-compliant wallet solutions,
RigSec helps clients protect their valuable digital assets and maintain the trust of their stakeholders.

1.2 About edgeX

edgeX V1, the Minimum Viable Product (MVP) of edgeX, is a high-performance, orderbook-based perpetual de-
centralized exchange (Perp DEX), crafted to deliver a native trading experience. This is achieved through advanced
trading infrastructure, superior performance, and trader-centric features.

2

2 Executive Overview

The team of 3 consultants from RigSec meticulously examined the smart contracts provided by edgeX. This process
involved a thorough analysis of the codebase, including static and dynamic testing. The consultants employed both
automated and manual processes to test the security of the codebase.

2.1 Scope

The security assessment was scoped to the following address:

Ethereum Mainnet: 0xC0a1a1e4AF873E9A37a0caC37F3aB81152432Cc5

Binance Smart Chain: 0x0520b0A951658Db92b8A2dd9F146bB8223638740

Arbitrum: 0xceeED84620e5eb9ab1d6Dfc316867D2cdA332E41

2.2 Risk Classification

RigSec uses a risk classification matrix to determine the risk of a found issue. The matrix is based on the likelihood
of the issue occurring and the impact of the issue. The risk classification is based on the following matrix:

Table 1: Risk Classification

Risk Impact - High Impact - Medium Impact - Low
Likelihood - High Critical High Medium
Likelihood - Medium High Medium Low
Likelihood - Low Medium Low Informational

2.3 Finding Summary

Table 2: Summary of Findings

Critical High Medium Low Informational
0 0 1 2 1

3

3 Findings

3.1 (RS-01) Risk when swapping with 1inch router

Severity: Medium Risk
Status: Confirmed

Description

In the MultiSigPoolV5WithPermit::deposit()` function, the input tokens would be swapped to USDT using the
1inch router. Specifically, the swap() function of the 1inch router smart contract is used to swap arbitrary tokens
to USDT. Since the swap is done with a low-level call with calldata provided by the user, a malicious user could
potentially invoke other functions of the 1inch router, leading to unspecified risks.

// Swap token
(bool success, bytes memory returndata)= AGGREGATION_ROUTER_V5_ADDRESS.call{value:msg.
→˓value}(exchangeData);
require(success, "exchange failed");

Recommendation

Validate the user input to ensure that the first 4 bytes match signature of the swap() function.

3.2 (RS-02) Signature does not follow EIP-712

Severity: Low Risk
Status: Confirmed

Description

The message signing operations in the following functions do not adhere to the EIP-712 specification: depositWith-
Permit(), withdrawETH(), withdrawErc20(), withdrawERC20Mpc(), and factTransferErc20(). Not following EIP-
712 for signing data can lead to unclear and ambiguous data structures, increasing the risk of signing unintended
or malicious data. It also makes signatures vulnerable to replay attacks due to the lack of context-specific informa-
tion. Users may have poor experience because of cryptic and hard-to-understand signing requests. In addition, the
interoperability with other tools and services that support EIP-712 would be hindered.

function depositWithPermit(
...

// check MPC signature
require(ECDSA.recover(ECDSA.toEthSignedMessageHash(keccak256(abi.

→˓encodePacked(amount, starkKey, positionId, block.chainid))), mpcSignature) ==␣
→˓owner,"invalid mpc signature");

function withdrawETH(
...

bytes32 operationHash = keccak256(abi.encodePacked("ETHER", to, amount,␣
→˓expireTime, orderId, address(this), block.chainid));

operationHash = ECDSA.toEthSignedMessageHash(operationHash);

4

Recommendation

Follow EIP-712 when signing and verifying messages.

3.3 (RS-03) USDT lacks a permit operation on both Ethereum and BSC networks,
leading to the failure of depositWithPermit function

Severity: Low Risk
Status: Confirmed

Description

The MultiSigPoolV5WithPermit.depositWithPermit() function plans to execute the permit() operation on USDT
tokens when deployed on Ethereum, BSC, and Arbitrum. However, implementations of USDT differ across these
blockchains. Notably, USDT does not support the permit() operation on the BSC chain and Ethereum, causing the
depositWithPermit() function to always fail on these blockchains.

// permit call
IERC20Permit(USDT_ADDRESS).permit(owner,address(this),amount,deadline,v,r,s);

Recommendation

Since the depositWithPermit() function is ineffective on Ethereum and BSC, it can be removed on the version
deployed on those two blockchains.

3.4 (RS-04) Deprecate testnet used in the contract

Severity: Informational
Status: Confirmed

Description

In the MultiSigPoolV5WithPermit.deposit() and MultiSigPoolV5WithPermit.depositWithPermit() functions, the
chain ID must be 1 (Ethereum mainnet), 5 (Goerli), or 11155111 (Sepolia) to proceed with depositing ERC20
tokens into the StarkEx service. However, after the Dencun upgrade, the Goerli testnet has been deprecated and is
no longer in use. Therefore, checking block.chainid==5 would be redundant here. More details are available in
this resource: https://blog.ethereum.org/2023/11/30/goerli-lts-update

if (block.chainid == 1 || block.chainid == 5 || block.chainid == 11155111){
// safeApprove requires unsetting the allowance first.
IERC20(USDT_ADDRESS).safeApprove(STARKEX_ADDRESS, 0);
IERC20(USDT_ADDRESS).safeApprove(STARKEX_ADDRESS, returnAmount);

// deposit to starkex
IStarkEx starkEx = IStarkEx(STARKEX_ADDRESS);
starkEx.depositERC20(starkKey, ASSET_TYPE, positionId, returnAmount);
return returnAmount;

}

5

https://blog.ethereum.org/2023/11/30/goerli-lts-update

Recommendation

Remove references to the Goerli testnet due to its deprecation post-Dencun upgrade.

6

	Introduction
	About RigSec
	About edgeX

	Executive Overview
	Scope
	Risk Classification
	Finding Summary

	Findings
	(RS-01) Risk when swapping with 1inch router
	Description
	Recommendation

	(RS-02) Signature does not follow EIP-712
	Description
	Recommendation

	(RS-03) USDT lacks a permit operation on both Ethereum and BSC networks, leading to the failure of depositWithPermit function
	Description
	Recommendation

	(RS-04) Deprecate testnet used in the contract
	Description
	Recommendation

