

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2025.06.16, the SlowMist security team received the edgeX team's security audit application for edgeX,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

This project is a perpetual trading platform built on the StarkWare scaling solution. It realizes three-signature fund

custody through the MultiSigPoolV5WithPermit contract (supporting ERC20 exchanges, licensed deposits, and fast

withdrawals). By leveraging the modular perpetual contract engine of the StarkPerpetual contract (including position

management, validator scheduling, and state storage), it constructs a hybrid architecture of Layer1 asset custody

and Layer2 high-frequency trading.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Non-EIP-712

compliant message
signing

Others Low Acknowledged

N2
Risk of Signature

Replay
Replay Vulnerability Low Acknowledged

N3
Potential Dos attack

in token permit
execution

Denial of Service
Vulnerability

Low Acknowledged

N4
External call function

check
Others Suggestion Acknowledged

N5
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

N6
Centralization Risk of

Signers
Authority Control
Vulnerability Audit

Information Acknowledged

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

StarkPerpetual:

Proxy: https://etherscan.io/address/0xfaae2946e846133af314d1df13684c89fa7d83dd

Impl: https://etherscan.io/address/0x8c43c9bec15d82d153c52518030e0a9590abd35d

MultiSigPool:

https://etherscan.io/address/0xc0a1a1e4af873e9a37a0cac37f3ab81152432cc5

https://bscscan.com/address/0x0520b0a951658db92b8a2dd9f146bb8223638740

https://arbiscan.io/address/0xceeed84620e5eb9ab1d6dfc316867d2cda332e41

Proxy

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
ProxyRoles

setUpgradeActivationDel
ay

Private
Can Modify

State
-

getUpgradeActivationDe
lay

Public - -

getEnableWindowDurati
on

Public - -

setEnableWindowDurati
on

Private
Can Modify

State
-

implementation Public - -

implementationIsFrozen Private
Can Modify

State
-

initialize External - -

<Receive Ether> External Payable -

<Fallback> External Payable -

setImplementation Private
Can Modify

State
-

isNotFinalized Public - -

setFinalizedFlag Private
Can Modify

State
-

addImplementation External
Can Modify

State
onlyUpgradeGovernor

removeImplementation External
Can Modify

State
onlyUpgradeGovernor

upgradeTo External Payable
onlyUpgradeGovernor notFinalized

notFrozen

StarkPerpetual

Function Name Visibility Mutability Modifiers

getNumSubcontracts Internal - -

StarkPerpetual

magicSalt Internal - -

handlerMapSection Internal - -

expectedIdByIndex Internal - -

initializationSentinel Internal - -

MainDispatcher

Function Name Visibility Mutability Modifiers

magicSalt Internal - -

handlerMapSection Internal - -

expectedIdByIndex Internal - -

validateSubContractIndex Internal - -

handlingContractId External - -

getSubContractIndex Internal - -

getSubContract Public - -

setSubContractAddress Internal Can Modify State -

MainDispatcherBase

Function Name Visibility Mutability Modifiers

<Receive Ether> External Payable -

<Fallback> External Payable -

initialize External Can Modify State notCalledDirectly

callExternalInitializer Private Can Modify State -

BlockDirectCall

Function Name Visibility Mutability Modifiers

<Constructor> Internal Can Modify State -

Governance

Function Name Visibility Mutability Modifiers

getGovernanceInfo Internal - -

initGovernance Internal Can Modify State -

_isGovernor Internal - -

_cancelNomination Internal Can Modify State onlyGovernance

_nominateNewGovernor Internal Can Modify State onlyGovernance

acceptNewGovernor Private Can Modify State -

_acceptGovernance Internal Can Modify State -

_removeGovernor Internal Can Modify State onlyGovernance

MultiSigPoolV5WithPermit

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

<Receive Ether> External Payable -

deposit Public Payable nonReentrant

depositWithPermit Public Can Modify State nonReentrant

withdrawETH Public Can Modify State nonReentrant

withdrawErc20 Public Can Modify State nonReentrant

withdrawErc20ForMPC Public Can Modify State nonReentrant

MultiSigPoolV5WithPermit

factTransferErc20 Public Can Modify State nonReentrant

isNative Internal - -

isAllowedSigner Public - -

tryInsertOrderId Internal Can Modify State -

calcSigHash Public - -

4.3 Vulnerability Summary

[N1] [Low] Non-EIP-712 compliant message signing

Category: Others

Content

In the MultiSigPoolV5WithPermit contract, the depositWithPermit, withdrawETH, withdrawErc20,

withdrawErc20ForMPC, and factTransferErc20 functions use methods that do not conform to the EIP-712

specification for message signing. In the current implementation, the message data is hashed directly, and then the

Ethereum-signed message hash is applied, instead of using the structured data hashing defined in EIP-712.

This approach does not comply with the regulations regarding structured data hashing in the EIP-712 standard. As a

result, when users are asked to sign a message, they will see a 32-byte encrypted value instead of a human-readable

structured message. This lack of clarity may lead to user confusion and pose potential security risks. Users may sign

the data without fully understanding its content or purpose.

Additionally, some mainstream wallets may require users to manually enable the eth_sign functionality to perform

such signatures, or they might have disabled eth_sign signatures altogether as a security measure. This requirement

creates an extra barrier and significantly degrades the user experience.

Code Location:

./contracts/core/MultiSigPoolV5WithPermit.sol

 function depositWithPermit(

 ...

) public nonReentrant returns (uint256) {

 ...

require(ECDSA.recover(ECDSA.toEthSignedMessageHash(keccak256(abi.encodePacked(amount,

starkKey, positionId, block.chainid))), mpcSignature) == owner,"invalid mpc

signature");

 ...

 }

 function withdrawETH(

 ...

) public nonReentrant {

 ...

 bytes32 operationHash = keccak256(abi.encodePacked("ETHER", to, amount,

expireTime, orderId, address(this), block.chainid));

 operationHash = ECDSA.toEthSignedMessageHash(operationHash);

 ...

 }

 function withdrawErc20(

 ...

) public nonReentrant {

 ...

 bytes32 operationHash = keccak256(abi.encodePacked("ERC20", to, amount, token,

expireTime, orderId, address(this), block.chainid));

 operationHash = ECDSA.toEthSignedMessageHash(operationHash);

 ...

 }

 function withdrawErc20ForMPC(

 ...

) public nonReentrant {

 ...

 bytes32 userOperationHash = keccak256(abi.encodePacked(to, amount, token,

userSignTime, block.chainid));

 userOperationHash = ECDSA.toEthSignedMessageHash(userOperationHash);

 require(ECDSA.recover(userOperationHash, fromUserSignature) == fromUser,"invalid

from user signature");

 // check withdraw signature

 bytes32 operationHash = keccak256(abi.encodePacked("ERC20", to, amount, token,

expireTime, orderId, address(this), block.chainid,fromUser));

 operationHash = ECDSA.toEthSignedMessageHash(operationHash);

 ...

 }

 function factTransferErc20(

 ...

) public nonReentrant {

 ...

 bytes32 operationHash = keccak256(abi.encodePacked("FAST",to, amount, token,

expireTime, salt, orderId, address(this), block.chainid));

 operationHash = ECDSA.toEthSignedMessageHash(operationHash);

 ...

 }

Solution

It is recommended to implement EIP-712 compliant structured data signing.

Status

Acknowledged

[N2] [Low] Risk of Signature Replay

Category: Replay Vulnerability

Content

In the depositWithPermit and withdrawErc20ForMPC functions of the MultiSigPoolV5WithPermit contract, it checks

whether the data signature is from an MPC user to conduct deposits and withdrawals for MPC users. However, after

verifying the signature, the incoming signature is not marked as used. This means that other users can reuse this

signature to call these two functions. This may unexpectedly consume the tokens of legitimate MPC users. For

example, the signature can be reused to call the depositWithPermit function.

Code Location:

./contracts/core/MultiSigPoolV5WithPermit.sol

 function depositWithPermit(

 ...

) public nonReentrant returns (uint256) {

 ...

require(ECDSA.recover(ECDSA.toEthSignedMessageHash(keccak256(abi.encodePacked(amount,

starkKey, positionId, block.chainid))), mpcSignature) == owner,"invalid mpc

signature");

 ...

 }

 function withdrawErc20ForMPC(

 ...

) public nonReentrant {

 ...

 bytes32 userOperationHash = keccak256(abi.encodePacked(to, amount, token,

userSignTime, block.chainid));

 userOperationHash = ECDSA.toEthSignedMessageHash(userOperationHash);

 require(ECDSA.recover(userOperationHash, fromUserSignature) == fromUser,"invalid

from user signature");

 ...

 }

Solution

It is recommended to check whether the signature has been used in the function, or add an incrementable nonce to

the signed data for verification.

Status

Acknowledged; The project team responded: In fact, the mpc signature is used as an anti-money laundering mark,

and the deposits and withdrawals in the contract are mainly called by ourselves.

[N3] [Low] Potential Dos attack in token permit execution

Category: Denial of Service Vulnerability

Content

In the MultiSigPoolV5WithPermit contract, users execute account authorization operations and deposit for MPC

users by calling the depositWithPermit function. This function will call the permit function of the ERC20 token

contract to grant a spending limit. However, if the permit function is preemptively executed by a malicious user

(attackers can obtain the corresponding parameters by monitoring the mempool), it may roll back, causing the entire

transaction to fail.

Code Location:

./contracts/core/MultiSigPoolV5WithPermit.sol

 function depositWithPermit(

 ...

) public nonReentrant returns (uint256) {

 ...

 // permit call

 IERC20Permit(USDT_ADDRESS).permit(owner,address(this),amount,deadline,v,r,s);

 ...

 }

Solution

It is recommended to wrap the permit function call with a try-catch block or implement conditional checks to ensure

that if a permit call in a for-loop fails, it does not cause the entire transaction to roll back.

Status

Acknowledged

[N4] [Suggestion] External call function check

Category: Others

Content

In the MultiSigPoolV5WithPermit contract, the deposit function enables users to deposit USDT into the current

contract or StarkEx. If the token transferred by the user is not USDT, the AggregationRouter will first be used to

exchange the transferred token into USDT. Although the parameters for the exchange are checked here, the function

selector for the external call is not examined. If the function selector to be called does not meet expectations,

unexpected errors may occur.

Code Location:

./contracts/core/MultiSigPoolV5WithPermit.sol

 function deposit(

 IERC20 token,

 uint256 amount,

 uint256 starkKey,

 uint256 positionId,

 bytes calldata exchangeData

) public payable nonReentrant returns (uint256) {

 ...

 if (address(token) == USDT_ADDRESS){ // deposit USDT

 ...

 } else {

 (, IAggregationRouterV5.SwapDescription memory desc, ,) =

abi.decode(exchangeData[4:], (address, IAggregationRouterV5.SwapDescription, bytes,

bytes));

 ...

 // Swap token

 (bool success, bytes memory returndata)=

AGGREGATION_ROUTER_V5_ADDRESS.call{value:msg.value}(exchangeData);

 require(success, "exchange failed");

 ...

 }

 ...

 }

Solution

It is recommended to also check the function selectors of the externally-called contracts to ensure they meet

expectations.

Status

Acknowledged

[N5] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

In the Proxy contract, The UpgradeGovernor role can upgrade the underlying implementation contract. If this role is

set to an EOA address and its permission is compromised, it may lead to the underlying implementation contract

being upgraded to a malicious one, thus affecting the normal operation of the project.

Code Location:

./starkware/solidity/upgrade/Proxy.sol

 function upgradeTo(

 address newImplementation,

 bytes calldata data,

 bool finalize

) external payable onlyUpgradeGovernor notFinalized notFrozen {

 ...

 }

Solution

In the short term, transferring the ownership of core roles to multisig contracts is an effective solution to avoid single-

point risk. But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up

multiple privileged roles to manage each privileged function separately. Permissions involving user funds and

contract updates should be managed by the community, while permissions involving emergency contract

suspensions can be managed by the EOA address. This allows for rapid response to threats while ensuring the safety

of user funds.

Status

Acknowledged; The project team responded: The core role of the proxy contract will be replaced from the eoa

address to a multi-signature contract.

[N6] [Information] Centralization Risk of Signers

Category: Authority Control Vulnerability Audit

Content

In the MultiSigPoolV5WithPermit contract, when users withdraw funds, they need data signed by two different

signers to pass the verification. However, there is a possibility that an attacker, through centralized malicious means,

steals the permissions of the two signers and constructs unexpected withdrawal data for signature verification,

thereby stealing the funds in the contract.

Code Location:

./contracts/core/MultiSigPoolV5WithPermit.sol

 function withdrawETH(

 ...

) public nonReentrant {

 ...

 for (uint8 index = 0; index < allSigners.length; index++) {

 address signer = ECDSA.recover(operationHash, signatures[index]);

 require(signer == allSigners[index], "invalid signer");

 require(isAllowedSigner(signer), "not allowed signer");

 }

 ...

 }

 function withdrawErc20(

 ...

) public nonReentrant {

 ...

 for (uint8 index = 0; index < allSigners.length; index++) {

 address signer = ECDSA.recover(operationHash, signatures[index]);

 require(signer == allSigners[index], "invalid signer");

 require(isAllowedSigner(signer),"not allowed signer");

 }

 ...

 }

 function factTransferErc20(

 ...

) public nonReentrant {

 ...

 for (uint8 index = 0; index < allSigners.length; index++) {

 address signer = ECDSA.recover(operationHash, signatures[index]);

 require(signer == allSigners[index], "invalid signer");

 require(isAllowedSigner(signer),"not allowed signer");

 }

 ...

 }

Solution

N/A

Status

Acknowledged

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002506180002 SlowMist Security Team 2025.06.16 - 2025.06.18 Medium Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium, 3 low risks, 1 suggestion and 1 information. All the findings were

acknowledged. The code has been deployed to the mainnet. Since the transfer management of the permissions of

the core roles in some contracts of the project has not been carried out yet, the risk level of this report is temporarily

medium.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

